Journal of Organometallic Chemistry, 141 (1977) 113–121 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

THE PREPARATION AND SOME CATALYTIC PROPERTIES OF A NUMBER OF RHODIUM(I) DIOLEFIN COMPLEXES

ROBERT H. CRABTREE *, ANTOINE GAUTIER, GIOVANNI GIORDANO and TAUQIR KHAN

Institut de Chimie des Substances Naturelles, C.N.R.S., 91190 Gif-sur-Yvette (France) (Received June 20th, 1977)

Summary

The syntheses of the complexes [RhCl(cod)L], $[RhX(cod)]_2$, $[Rh(OCOPh)-(cod)(PPh_3)]$, $[Rh(S_2CNEt_2)(cod)]$ and $[Rh(cod)L_2]PF_6$ (L = a variety of amines or phosphines, X = OCOPh or SPh) are described, together with some exchange reactions of the type

 $[Rh(cod)(PR_3)_2]^* + [Rh(cod)(pyridine)_2]^* \rightarrow [Rh(cod)(PR_3)(pyridine)]^*$

in which the isolable mixed ligand complexes are the only detectable species at equilibrium. Some of these complexes are active homogeneous hydrogenation catalysts for alkenes, alkynes and ketones in non-coordinating solvents such as benzene (in the presence of NEt₃) and dichloromethane (with or without NEt₃). [Rh(OCOPh)(cod)(PPh₃)] selectively reduces 1-alkynes to 1-alkenes.

Introduction

The chemistry of cyclooctadiene complexes of rhodium has continously developed since the discovery by Chatt and Venanzi [1] of the complex [RhCl-(cod)]₂. A variety of related complexes of type [RhCl(cod)L] [1,2] and [Rh(cod)L₂]PF₆ [2,3] (L = amines and tertiary phosphines) have been isolated. Schrock and Osborn [3] have shown that [Rh(cod)L₂]PF₆ are catalyst precursors for the hydrogenation of alkenes, alkynes, alkadienes and ketones in coordinating solvents such as acetone and ethanol. We have prepared further complexes of these types and have found that some of them, in non-coordinating solvents, are active hydrogenation catalysts.

• Present Address: Sterling Chemistry Laboratory, Yale University, 225 Prospect Street, New Haven, Ct., 06520 (U.S.A.).

Results and discussion

The complexes $[RhX(cod)]_2(I)$

Our modified synthesis of $[RhCl(cod)]_2$ (Ia) from rhodium chloride, (cod) and sodium carbonate by reflux for 18 h in EtOH/H₂O has been described [4]. The benzoato-analogue $[Rh(OCOPh)(cod)]_2$ (Ib) is best prepared by the action of potassium benzoate on Ia in refluxing acetone. The positions of the $\nu(CO_2)$ bands in the IR spectrum of Ib (1545 cm⁻¹ (sym) and 1410 cm⁻¹ (asym)) are similar to those found for the analogous acetato complex [1] (1530 and 1419 cm⁻¹) suggesting a similar dimeric structure containing bridging carboxylato groups in both cases.

The dithiocarbamato complex $[Rh(S_2CNEt_2)(cod)]$ (Ic) is obtained in only moderate yield from the complex $[Rh(cod)(py)_2]PF_6$ [2] by the action of $[Et_2NH_2][Et_2NCS_2]$ in ethanol at room temperature. The position of the "thioureide" band in the IR spectrum of Ic ($\nu(NCS_2) = 1500 \text{ cm}^{-1}$) suggests [5] that the dithiocarbamate grouping is chelating; the positions of the PMR resonances due to the NEt₂ groups (δ 1.2 and 3.7 ppm) tends to confirm [5b] this structure.

The thiolato complex $[Rh(SPh)(cod)]_2$ (Id) was readily obtained by the action of TlSPh on Ia. These S-containing complexes (Ic and Id) were inactive as hydrogenation catalysts, and did not react with molecular hydrogen.

We were unable to obtain analogous carbonato, oxalato or thiobenzoato complexes by similar methods.

The complexes [RhCl(cod)Lj (III)

In non-coordinating solvents, such as benzene or dichloromethane, Ia readily reacts with ligands such as PPh₃; the latter gives [RhCl(cod)(PPh₃)] (IIa) [1]. We were able to synthesise a number of analogues in this way (L = P-n-Bu₃, b; P-i-Fr₃, c; PCy₃, d; 2-picoline, e; imidazole, f). Attempted preparations of similar complexes with the more π -accepting ligands L (P(OMe)₃, P(OPh)₃, PPh(OMe)₂) failed due to loss of (cod), although we have been able to prepare the analogous iridium complexes [6]. This is a further example of the greater lability of olefins bound to rhodium compared with iridium [7], and the greater trans-effect associated with the more π -accepting ligands L [6,7].

The ¹H NMR spectra of the complexes IIa—IIe show two distinct (cod)vinylic resonances. The protons, H_A , *trans* to L resonate considerably downfield of the protons H_B , *trans* to Cl (see Table 2). We found the same effects [6] for the much wider series of analogous iridium complexes where the position of the H_A

114

resonance correlated well with Tolman's classification of the electronic effects of the ligands L [8].

In the imidazole complex, IIf, the H_A and H_B protons resonated as a single broad peak at room temperature and down to -80° C in CD₂Cl₂. The same behaviour has been observed for the QPh₃ (Q = As, Sb) complexes of type II and has been ascribed to a facile dissociation of QPh₃ [9].

The complex $[Rh(OCOPh)(cod)(PPh_3)]$ (III)

 $[RhX(cod)(PPh_3)]$ (X = OCOPh, S₂CNEt₂, SPh) could not be obtained by the action of an equivalent of PPh₃ on a dichloromethane solution of Ib—Id; these complexes tended to lose (cod) and gave a complicated mixture.

The required benzoato complex $[Rh(OCOPh)(cod)(PPh_3)]$ (III), which was a selective catalyst for the reduction of 1-alkynes to 1-alkenes (see below), was obtained pure by the action of TlOCOPh on $[RhCl(cod)(PPh_3)]$ for 24 h in THF.

The IR spectrum of III shows $\nu(CO_2)$ bands at 1630 cm⁻¹ (asym) and 1340 cm⁻¹ (sym), characteristic [10] of a monodentate carboxylato group. In solution, this complex apparently undergoes an exchange (see below), because the (cod)vinyl protons resonate as a single very broad peak in the PMR spectrum at room temperature; measurements at low temperatures were precluded by solubility limitations.

The complexes $[Rh(cod)L_2]PF_6$ (IV) and $[Rh(cod)LL']PF_6$ (V)

A number of complexes of the type $[Rh(cod)L_2]PF_6$ (IV, L = amines and phosphines) have been reported [2, 3a]. The best procedure seems to be treatment of Ia in acetone with NH_4PF_6 and an excess of L. We have prepared two new complexes by this method $[Rh(cod)L_2]PF_6$ (IV, L = P-n-Bu₃, a; imidazole, b). The bulky ligands L, having cone angles [8] greater than about 150°, only give the complexes [RhCl(cod)L] (II, L = P-i-Pr₃, c; PCy₃, d) by this procedure.

We find that equimolar mixtures of the bis-phosphine and bis-amine complexes (IV) in CH_2Cl_2 rapidly rearrange in solution to give the new mixed ligand complexes [Rh(cod)LL']PF₆ (V, $I_2 = PPh_3$, L' = py, a; L' = imidazole, b; L' = py, L = P-i-Pr₃, c; L = PCy₃, d), which were isolated with ether. We have similarly prepared analogous iridium complexes [6]. These complexes show two distinct (cod)-vinylic resonances in the PMR spectrum, but no trace of the (cod)-vinylic resonances of the parent bis-phosphine or bis-amine complexes (see Table 1).

These complexes are also formed by the action of an excess of amine (L') on the complex [RhCl(cod)L] (II, L = PPh₃, P-i-Pr₃, PCy₃) in acetone. They can be crystallised by the addition of ethanolic NH_4PF_6 .

Homogeneous catalysis by the complexes $[Rh(cod)L_2]PF_6$ (IV) and $[Rh(cod)LL']PF_6$ (V)

Osborn has described the complexes $[RhH_2L_2S_2]ClO_4$ (VI, L = tertiary phosphine, S = acetone, ethanol) which are formed from $[Rh(cod)L_2]ClO_4$ in a coordinating solvent under hydrogen. These complexes are catalysts for the hydrogenation of alkenes, ketones and the selective reduction of alkynes and alkadienes to alkenes. Evidence was also found for a deprotonation/protonation equilibrium [3].

In our initial experiments, reported here, we have studied the complexes

Substrate	Catalyst	Conditions ^C	Products ^b	Rate ^C	
~~~	IV c	C6H6 NEt3	$\sim\sim$	1500 ^d	
PhCH=CH2	LZ c	C6H6 HEt3	PnCH ₂ CH ₃	600 ^e	
	₽₹C	C6H6 NEt3		10	
Ме2С=СНМе	Iℤc	C6H6 NEt3	Me ₂ CHCH ₂ Me	4 [†]	
Pn CO2Me	Шс	C6H6/NEt3	Pn CO ₂ Me	6 [*]	
PhC==CMe	⊠c	C6H6 NEt3	PhCH ₂ CH ₂ Me	2	
	⊡C	C6H6NEt3	Он-он	12	
PhCOMe	IZ¢	C6H6NEt3	PhCH(OH)Me	12 ^g	
Ph ₂ CO	IVc	C6H6/NEt3	Рћ ₂ СНОН	7	
	Шc	CH2CI2		4000	
$\sim\sim$	1¥c	CH2CI2/NEt3	$\sim$	1500 ⁰	
$\sim\sim$	Σα	CH ₂ Cl ₂	$\sim$	250	
$\sim \sim \sim$	Σa	CH2CI2/NEt3		0	
PnC==CH	Σo	C ₆ H ₆ /PhCO ₂ H/NEt ₃	PhCH=CH2	3.5 ^h	
нс≡ссн₂он	Σœ	C6H6/PhCO2H/NEt3	сн ₂ =снсн ₂ он	5.5 ^h	
С	<b>X</b> a	C ₆ H ₆ /PhCO ₂ H/NEt ₃	С	2 ^{1, h}	
PnC==CH	ш	CEHEPHCO2HNEt3	PhCH=CH2	3.7 ^h	

#### CATALYSTS, CONDITIONS, PRODUCTS AND RATES IN THE HYDROGENATION OF SOME UNSATURATED SUBSTRATES WITH VARIOUS CATALYSTS

^c Substrate, 0.5 M; catalyst, 2 mM; H₂, 1 atm (initially); temperature, 20°C ( $\pm$ 1°); volume of solution, 16 ml; NEt₃ (where present), 0.1 M; PhCO₂H (where present), 10 mM. ^b Identity confirmed by PMR and, in most cases, also by GLPC. ^c Maximum rate (mol (mol Rh)⁻¹ h⁻¹) of hydrogen uptake measured manometrically and confirmed by PMR and, in most cases, by GLPC of products ( $\pm$ 10%). For comparison, the rate of reduction of 1-hexane by [RhCl(Ph₃)₃] was 160 under the same conditions in benzene. ^d Initial rate of formation of 2-hexanes = 300. ^e Some yellow precipitate formed. ^f These slower reactions were not followed to completion. ^g The product alcohol appears to deactivate the catalyst since the rate falls to zero after 250 catalytic cycles. ^h After the absorption of 1 mol of H₂ the product is ca. 95% 1-alkene; subsequent reduction to alkane is about seven times slower.

#### 116

TABLE 1

 $[Rh(cod)(PPh_3)_2]PF_6$  (IVc) and  $[Rh(cod)(PPh_3)py]PF_6$  (Va) as hydrogenation catalysts in non-coordinating solvents. The use of solvents such as benzene, and especially  $CH_2Cl_2$ , of low coordinating power limits the competition between the solvent and the olefin for active sites at the metal and we observe particularly high catalytic activity in these systems.

The yellow complexes IVc or Va dissolve in benzene at 25°C under one atmosphere of hydrogen only in the presence of NEt₃, to give catalytically active solutions and fine precipitates of NEt₃HPF₆. The same complexes dissolve readily in dichloromethane and give catalytically active solutions under hydrogen in the presence or absence of NEt₃. This is largely a solubility effect: only the neutral deprotonated rhodium species are soluble in benzene, while both the cationic and neutral rhodium species are soluble in  $CH_2Cl_2$ . Both are excellent hydrogenation catalysts, but the neutral species are also excellent isomerisation catalysts; similar effects were observed by Osborn [3] for the analogous systems in coordinating solvents. The solutions containing NEt₃ had identical activities, within experimental error, for  $CH_2Cl_2$  or benzene as solvents.

The exact nature of the species in solution under our conditions is unknown; certainly, we have found no evidence for the presence of solvates of type VI, such as are found in coordinating solvents. All attempts to crystallize intermediates or observe their PMR spectra at low temperature failed, even though we have been able to observe intermediates of the type  $[IrH_2(cod)L_2]PF_6$  in the analogous iridium system [6,11]. Va tends to deposit metallic rhodium after some hours while IVc is apparently indefinitely stable under hydrogen in  $CH_2Cl_2$  or  $C_6H_6$ .

Table 1 shows the reaction conditions, substrates, products and rates of reduction of a number of unsaturated compounds by the complexes III, IVc and Va. The rates for IVc are faster than those observed by Osborn [3] but isomerisation of the alkene substrate is a more serious side reaction under our conditions.

The selectivity of IVc or Va for the reduction of alkynes to alkenes is poor. alkane being the sole product, although Schrock and Osborn [3] had success with other complexes of type IV in coordinating solvents. In the presence of benzoate ion, however, Va becomes highly selective for the reduction of 1-alkynes to 1-alkenes. For example, phenylacetylene, which is rapidly polymerised by IVc or Va alone, is slowly reduced with one equivalent of  $D_2$  to cis-PhCD= CHD by Va in the presence of an excess of  $(NEt_3H)(PhCO_2)$ . The reduction therefore occurs via a  $\pi$ -bonded intermediate. Benzoato complexes are probably involved since  $[Rh(OCOPh)(cod)(PPh_3)]$  (III) is also a catalyst for the reaction; an excess of  $(NEt_{1}H)(PhCO_{2})$  is still necessary, probably to prevent dissociation of the carboxylato ligand. This type of dissociation may also account for the coalescence of the  $H_A$  and  $H_B$  resonances in the PMR spectrum of III (see above). A monohapto-dihapto equilibrium of the benzoato-ligand is a possible alternative explanation; such a process might also account for the selectivity observed in the catalytic reduction of 1-alkynes, described above. On this hypothesis, the 1-alkyne would be better able to open up the chelating benzoato ligand than the 1-alkene, and hence gain access to the metal centre.

Ketones are reduced by IVc in benzene in the presence of  $NEt_3$  but in the case of acetone and acetophenone, the catalyst is soon deactivated, probably by the product alcohol. Cyclohexanone and benzophenone are smoothly reduced, and

the reduction of 4-t-butylcyclohexanone gives a mixture of the *cis* and *trans* alcohols in the molar ratio 37/63.

Some of these results have already been briefly reported [12].

### Experimental

The complexes were prepared by standard Schlenk-tube techniques as described in ref. 3. NMR spectra were measured on a Perkin—Elmer R12B instrument.

RhCl₃ was a generous loan of the Compagnie des Mètaux Précieux.  $(Et_2NH_2)$ -( $Et_2NCS_2$ ) was prepared by Grodski's method [13]. Other reagents were obtained from Fluka AG and used as received, except PCy₃, which was prepared from CyMgBr and PCl₃ [14] by M. Claude Frajerman. The analyses, PMR data, and yields of the new complexes are shown in Table 2.

Di- $\mu$ -benzoatodi-1,5-cyclooctadienehodium(1). [RhCl(cod)]₂ (0.25 g) was treated with PhCO₂K (0.5 g) in refluxing acetone (30 ml) for 8 h. Water (20 ml) was added to the cooled solution and the yellow precipitate filtered off, washed with water (2 × 5 ml) then ethanol (2 × 5 ml), and dried in vacuo. The product was recrystallised from CH₂Cl₂/pentane as yellow prisms. Yield 0.25 g.

Dithiocarbamato-1,5-cyclooctadienerhodium(I).  $[Rh(cod)(py)_2]PF_6$  [2] (440 mg) in suspension in ethanol (20 ml) was treated with  $(Et_2NH_2)(Et_2NCS_2)$  (200 mg) at 20°C for 20 min. The yellow precipitate was filtered off and recrystallised twice from  $CH_2Cl_2/Et_2O/EtOH$  (1/1/1) to give a yellow solid. Yield 100 mg.

Phenylthiolatothallium(1). TICO₃ (4 g) was dissolved in water (100 ml) and PhSH (2 ml) added. The mixture was stirred overnight and the yellow microcrystalline precipitate filtered off, and triturated with water (5  $\times$  5 ml), then ethanol (5 ml), then ether (5 ml) and dried in air. Yield 16.5 g (89%) (Found: C, 23.0; H, 1.7. C₆H₆STl calcd.: C, 23.0; H, 1.5%). We thank Dr. K. Turner (Norwich) for this synthesis.

 $Di-\mu$ -phenylthiolatodi-1,5-cyclooctadienedirhodium(I). [RhCl(cod)]₂ (320 mg) was treated with TlSPh (420 mg) in CH₂Cl₂ (10 ml) for 18 h. The product was isolated with ether and recrystallised from CH₂Cl₂/Et₂O to give yellow crystals. Yield 340 mg.

1,5-Cyclooctadiene(t-phosphine)chlororhodium(1). Finely divided [RhCl-(cod)]₂ (500 mg) in octane (10 ml) was treated with PCy₃ or P-i-Pr₃ (1.2 mol. eq.) or P-n-Bu₃ (1.0 mol-eq.) and stirred. After 20 min at 40°C (L = PCy₃ and P-i-Pr₃) the solid was filtered off and recrystallised from  $CH_2Cl_2/octane$  as light yellow prisms. Where L = P-n-Bu₃, the resulting solution deposited large orange crystals of pure complex over 1 month. These were separated by decantation and washed with the minimum volume of octane. L = PCy₃ yield 900 mg; L = P-i-Pr₃ yield 580 mg; L = P-n-Bu₃ yield 350 mg.

1,5-Cyclooctadiene(amine)chlororhodium(1). The following complexes were prepared similarly in  $CH_2Cl_2$  (10 ml) with a 10 mol excess of L. They were isolated with ether and recrystallised as above. L = 2-picoline: yield 620 mg; L = imidazole, yield 570 mg.

Benzoatothallium(I). A saturated aqueous solution of PhCO₂Na (3 g) was added to TINO₃ (4.5 g) in H₂O (15 ml). The white precipitate was filtered off,

#### TABLE 2

YIELDS, ANALYSES AND PMR DATA FOR THE NEW COMPLEXES

Complex a		Yield	Analysis (found (calcd.)(%)		PMR data $b$ ( $\delta$ (ppm))		
·		(	С	н	N	(cod)- vinyl c	L resonances
[Rh(OCOPh)(cod)]2	Ib	80	54.4	5.0		4.28	7.2, c, and 7.8, c,
			(54.2)	(5.2)			Ph.
[Rh(S ₂ CNEt ₂ )(cod)]	Ic	15	43.3	5.9	4.3	4.45	1.2, t (7), Me: 3.7
			(43.5)	(6.1)	(3.9)		9 (7), CH ₂ .
[Rh(SPh)cod)] ₂	Id	82	52.3	5.4		4.25	7.1—7.6, c, Ph.
			(52.5)	(5.4)			
[RhCl(cod)(P-n-Bu ₃ )]	пь	40	53.8	8.6		5.30	1.95, c. Me: 2.5 c.
			(53.5)	(8.7)		3.50	CH ₂
[RhCl(cod)(P-i-Pr ₃ )]	llc	65	50.5	8.3		5.29	1.3, dd (6 and 12),
			(50.2)	(8.2)		3.72	Me; 2.0, c, CH.
[RhCl(cod)(PCy ₃ )]	lld	80	59.7	8.6		5.32	0.8-2.1, c, Cy.
			(59.3)	(8.6)		3.60	
[RhCl(cod)(pc)]	Ile	90	49.3	5.6	4.1	4.75	3.25, s, Me; 7.2-
			(49.5)	(5.6)	(4.1)	3.50	7.8, c, and 8.8-9.0
							c, Ar.
[RhCl(cod)(imid)]	111	90	41.7	5.5	8.9	4.18 ^d	6.9, c, and 7.8, c,
			(42.0)	(5.1)	(8.9)		imid.
[Rh(OCOPh)(cod)(PPh3)]	III	56	66.5	5.2		~4.4 °	7.0-8.0, c, Ph.
			(66.7)	(5.4)			
[Rh(cod)(P-n-Bu ₃ ) ₂ ]PF ₆	IVa	60	50.9	8.7		4.95	1.95, c, Me; 2.5,
			(50.5)	(8.7)			c, CH2.
[Rh(cod)(imid)2]PF6	IVb	75	34.2	4.0	11.2	4.05	6.9, c, and 7.2, c;
			(34.2)	(4.1)	(11.4)		imid.
[Rh(cod)(PPh ₃ )(py)]PF ₆	Va	85	53.5	4.7	2.2	4.92	6.97.8, c and
			(53.5)	(4.6)	(2.0)	3.85	8.4-8.6, c, Ar.
[Rh(cod)(PPh3)(imid)]PFA	Vb	80	50.7	4.4	4.0	4.90	6.9-7.8, c, Ar
			(50.8)	(4.6)	(4.1)	3.73	
[Rh(cod)(P-i-Pr )(py)]PF6	Vc	80	44.5	6.4	2.4	4.451	1.3. dd. (6 and
<b>.</b>			(44.3)	(6.4)	(2.4)		12). Me: 2. c. CH:
					<b>.</b>		7.5-80 and 8.8-
							9.0. c. Ar.
Rh(cod)(PCya)(py))PF4	Vd	90	52.0	7.0	1.9	4.45	0.9-2.0. c. Cv
			(52.2)	(7.1)	(2.0)	4.25	7.5-7.9 and
			(00.0)		(2.0)	2.20	88-90 c Ar

^a cod = 1,5-cyclooctadiene, Cy = cyclohexyl, pc = 2-methylpyridine, imid = imidazole. All the complexes were yellow crystalline or microcrystalline solids. ^b in CDCl₃ at 35°C. Resonances reported as follows: position ( $\delta$ , ppm, multiplicity, ccupling constant (Hz)), assignment, s = singlet, d = doublet, c = complex resonance. Ar = aromatic group. In all cases satisfactory integrals were obtained. All complexes had a broad unresolved resonance at  $\delta$  1.8–2.6 ppm assigned to (cod)CH₂ protons and those complexes containing PPh₃ groups had a complex resonance from  $\delta$  7.0–7.9 ppm assigned to the aromatic protons. ^c Broad unresolved resonances:  $\omega(1/2) \sim 10$  Hz. In some cases the inequivalent (cod) vinyl protons were distinguished (see text). ^d Only one (cod)vinyl peak is observed probably due to an exchange process (see text). ^e The (cod)vinyl resonance is very broad at room temperature probably due to an exchange process. ^f A broad resonance  $\omega(1/2) \sim 20$  Hz: the inequivalence of the (cod)vinyl protons is insufficient for the resonances to be distinguished.

washed with water (5  $\times$  5 ml) and dried in air. Yield 3.7 g (68%) (Found: C, 26.0; H, 1.4. C₇H₅O₂Tl calcd.: C, 25.8; H, 1.6).

Benzoato-1,5-cyclooctadienetriphenylphosphinerhodium(I). [RhCl(cod)-(PPh₃)] [1] (350 mg) in THF (5 ml) was treated with TlOCOPh (350 mg) for 24 h and the mixture centrifuged decanted and filtered. The solvent was evaporated and the residue was twice recrystallised from  $CH_2Cl_2/octane$  to give a yellow powder. Yield 260 mg.

1,5-Cyclooctadienebis(tri-n-butylphosphine)rhodium(I) hexafluorophosphate. [RhCl(cod)]₂ (500 mg) was treated with P-n-Bu₃ (0.45 ml) and NH₄PF₆ (70 mg) in aqueous acetone (1/10, 10 ml). The solvent was removed and the residue treated with CH₂Cl₂/H₂O (1/1, 10 ml). The organic layer was separated, dried over MgSO₄, and the product crystallised by addition of octane (5 ml) with partial removal of the solvents in vacuo. Yield 940 mg.

1,5-Cyclooctadienediimidazolerhodium(1) hexafluorophosphate. [RhCl(cod)]₂ (500 mg) in acetone (20 ml) was treated with imidazole (500 mg) and  $NH_4PF_6$  (400 mg). Water (20 ml) was added and the solid formed was filtered off, washed with water (2 ml), dried in vacuo and recrystallised from  $CH_2Cl_2/Et_2O$  to give light yellow prisms. Yield 740 mg,

1,5-Cyclooctadiene(amine)triphenylphosphinerhodium(I) hexafluorophosphate. Method A. [Rh(cod)(PPh₃)₂]PF₆  $\cdot$  CH₂Cl₂ [3] (190 mg) and [Rh(cod)-(py)₂]PF₂ [2] (100 mg) were dissolved in CH₂Cl₂ (5 ml) and ether (10 ml) added. The crystals of [Rh(cod)(PPh₃)(py)]PF₆ formed were filtered off, washed with ether (2 ml) and dried in air. Yield 250 mg.

Method B. [RhCl(cod)(PPh₃)] [1] (500 mg) in aqueous acetone (1/10, 10 ml) was treated with pyridine (2 g) and  $NH_4PF_6$  (200 mg). The solvent was removed in vacuo, the residue washed with water, the methanol, and recrystallised from  $CH_2Cl_2/Et_2O/EtOH$  (5/4/1) to give yellow crystals. Yield 620 mg.

The corresponding imidazole complex was obtained similarly by both methods in comparable yields (80–85%). The corresponding complexes [Rh(cod)L-(py)]PF₆ (L = P-i-Pr₃ and PCy₃) were obtained in a similar way, but the reaction mixture must be refluxed 5 min (L = P-i-Pr₃) or 20 min (L = PCy₃) to effect substitution.

Method C. [Rh(cod)(py)₂]PF₆ [2] (500 mg) in acetone was treated with 1.5 mol- eq. of tertiary phosphine (L = P-i-Pr₃, and PCy₃). The crude products were precipitated with water washed with methanol, dried, and recrystallised as yellow-orange prisms from  $CH_2Cl_2/Et_2O$ . L = P-i-Pr₃ yield 480 mg; L = PCy₃ yield 650 mg.

Hydrogenation experiments. The hydrogenations were performed in a closed three-necked flask (volume: 358 ml) equipped with a manometer, a magnetic stirrer and taps connected to the hydrogen supply and a vacuum line. The solution to be studied was made up, except for the catalyst, and degassed by two freeze-thaw cycles in vacuo. The solid catalyst was added to the frozen solution under nitrogen the vacuum reestablished and the contents of the flask brought to 20°C with a water bath. The hydrogen, previously equilibrated with the appropriate solvent, was admitted. Hydrogen absorption began upon starting the stirrer and the pressure changes with time were recorded. The products were observed by PMR spectroscopy of the solutions and determined by GLC analysis. For good repeatability of the curves (a) the catalysts had to be freshly prepared, Va in particular having a tendency to give variable results with time, although the appearance of the catalyst was unaltered; (b) the olefin, or its benzene or dichloromethane solution, was passed through a short column of alumina (Merck Grade I) to deperoxidize it immediately prior to use. The alkynes and ketones were distilled or recrystallised as appropriate; (c) the benzene should be thiophene free and the  $CH_2Cl_2$  should be freshly distilled from  $CaH_2$  prior to use. The rate of reduction is quoted in mol  $H_2$  absorbed (mol Rh)⁻¹ h⁻¹ and refers to the fastest rate observed during a run; this was normally attained in the first minute or so. The catalyst solutions were yellow, except those involving 1-alkynes, which became deep red on addition of the substrate, but lightened somewhat when this had all been reduced to alkene.

The observation of cis-deuteriation of phenylacetylene. The reduction of phenylacetylene with an equivalent of  $D_2$  by the method described above (see also Table 1) gave a solution which was passed through an alumina column to remove the substrate, catalysts and co-catalysts. The solvent was largely removed in vacuo and the PMR spectrum of the resulting colourless liquid recorded. This showed no peaks in the vinylic proton region other than a 1/1/1 triplet  ${}^3J(H-D)$ trans 2.7 Hz. at  $\delta$  5.9 ppm which can only be due to cis-PhCD=CHD. In PhCH-CH₂,  ${}^3J(H-H)$  trans 17.5 Hz and  ${}^2J(H-H)_{gem}$  0.3 Hz for the corresponding signal at  $\delta$  5.9 ppm. The ratio  ${}^3J(H-H)/{}^3J(H-D) = 6.5$  is, within experimental error and as expected [15], the ratio of the magnetogyric ratios  $\gamma_H/\gamma_D = 6.52$ , confirming the correctness of the assignment.

#### Acknowledgements

We thank Dr. Hugh Felkin for his encouragement and many helpful discussions, and the Compagnie des Métaux Précieux for a loan of rhodium.

#### References

- 1 J. Chatt and L.M. Venanzi, J. Chem. Soc., (1957) 4735.
- 2 B. Denise and G. Pannetier, J. Organometal. Chem., 63 (1973) 423.
- 3 R.R. Schrock and J.A. Osborn, J. Amer. Chem. Soc., 91 (1971) 2816; 98 (1976) 2134, 2143 and 4450.
- 4 G. Giordano and R.H. Crabtree, Inorg. Syn., in press.
- 5 (a) J. Chatt, L.A. Duncanson and L.M. Venanzi, Nature, 177 (1956) 1042; (b) T.A. Stephenson and J.M.C. Alison, J. Chem. Soc. Dalton, (1973) 254.
- 6 R.H. Crabtree, H. Felkin and G.E. Morris, J. Organometal. Chem., in press.
- 7 L.M. Haines and E. Singleton, Inorg. Chem., 10 (1971) 1685 and 1696; J. Chem. Soc. Dalton, (1972) 1891.
- 8 C.A. Tolman, J. Amer. Chem. Soc., 92 (1970) 2953 and 2956.
- 9 H.C. Volger, K. Vrieze and A.P. Praat, J. Organometal. Chem., 14 (1968) 185 and 429.
- 10 S.D. Robinson, J. Chem. Soc. Dalton, (1973) 1912.
- 11 R.H. Crabtree, H. Felkin and G.E. Morris, Chem. Commun., (1976) 716.
- 12 R.H. Crabtree, Chem. Commun., (1975) 647.
- 13 M. Grodski, Ber., 14 (1881) 2754.
- 14 M.J. Smith, D. Ph. Thesis, Oxford, 1971, p. 99.
- 15 J.A. Poble, W.G. Schneider and H.J. Bernstein, High Resolution Nuclear Magnetic Resonance, McGraw-Hill, New York, 1959.